0 JBC
↳1 JBCToGraph (⇒, 830 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 120 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 190 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 10 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC11 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (true) {
if (x >= 0) {
x--;
y = Random.random();
} else if (y >= 0) {
y--;
} else {
break;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 33 rules for P and 0 rules for R.
P rules:
1462_0_main_LT(EOS(STATIC_1462), matching1, i734, matching2) → 1464_0_main_LT(EOS(STATIC_1464), -1, i734, -1) | &&(=(matching1, -1), =(matching2, -1))
1462_0_main_LT(EOS(STATIC_1462), i740, i734, i740) → 1465_0_main_LT(EOS(STATIC_1465), i740, i734, i740)
1464_0_main_LT(EOS(STATIC_1464), matching1, i734, matching2) → 1466_0_main_Load(EOS(STATIC_1466), -1, i734) | &&(&&(<(-1, 0), =(matching1, -1)), =(matching2, -1))
1466_0_main_Load(EOS(STATIC_1466), matching1, i734) → 1469_0_main_LT(EOS(STATIC_1469), -1, i734, i734) | =(matching1, -1)
1469_0_main_LT(EOS(STATIC_1469), matching1, i745, i745) → 1473_0_main_LT(EOS(STATIC_1473), -1, i745, i745) | =(matching1, -1)
1473_0_main_LT(EOS(STATIC_1473), matching1, i745, i745) → 1477_0_main_Inc(EOS(STATIC_1477), -1, i745) | &&(>=(i745, 0), =(matching1, -1))
1477_0_main_Inc(EOS(STATIC_1477), matching1, i745) → 1480_0_main_JMP(EOS(STATIC_1480), -1, +(i745, -1)) | &&(>=(i745, 0), =(matching1, -1))
1480_0_main_JMP(EOS(STATIC_1480), matching1, i746) → 1484_0_main_Load(EOS(STATIC_1484), -1, i746) | =(matching1, -1)
1484_0_main_Load(EOS(STATIC_1484), matching1, i746) → 1460_0_main_Load(EOS(STATIC_1460), -1, i746) | =(matching1, -1)
1460_0_main_Load(EOS(STATIC_1460), i733, i734) → 1462_0_main_LT(EOS(STATIC_1462), i733, i734, i733)
1465_0_main_LT(EOS(STATIC_1465), i740, i734, i740) → 1467_0_main_Inc(EOS(STATIC_1467), i740) | >=(i740, 0)
1467_0_main_Inc(EOS(STATIC_1467), i740) → 1470_0_main_InvokeMethod(EOS(STATIC_1470), +(i740, -1)) | >=(i740, 0)
1470_0_main_InvokeMethod(EOS(STATIC_1470), i743) → 1475_0_random_FieldAccess(EOS(STATIC_1475), i743)
1475_0_random_FieldAccess(EOS(STATIC_1475), i743) → 1481_0_random_FieldAccess(EOS(STATIC_1481), i743)
1481_0_random_FieldAccess(EOS(STATIC_1481), i743) → 1486_0_random_ArrayAccess(EOS(STATIC_1486), i743)
1486_0_random_ArrayAccess(EOS(STATIC_1486), i743) → 1603_0_random_ArrayAccess(EOS(STATIC_1603), i743)
1603_0_random_ArrayAccess(EOS(STATIC_1603), i743) → 1606_0_random_Store(EOS(STATIC_1606), i743, o551)
1606_0_random_Store(EOS(STATIC_1606), i743, o551) → 1608_0_random_FieldAccess(EOS(STATIC_1608), i743, o551)
1608_0_random_FieldAccess(EOS(STATIC_1608), i743, o551) → 1610_0_random_ConstantStackPush(EOS(STATIC_1610), i743, o551)
1610_0_random_ConstantStackPush(EOS(STATIC_1610), i743, o551) → 1615_0_random_IntArithmetic(EOS(STATIC_1615), i743, o551)
1615_0_random_IntArithmetic(EOS(STATIC_1615), i743, o551) → 1617_0_random_FieldAccess(EOS(STATIC_1617), i743, o551)
1617_0_random_FieldAccess(EOS(STATIC_1617), i743, o551) → 1619_0_random_Load(EOS(STATIC_1619), i743, o551)
1619_0_random_Load(EOS(STATIC_1619), i743, o551) → 1625_0_random_InvokeMethod(EOS(STATIC_1625), i743, o551)
1625_0_random_InvokeMethod(EOS(STATIC_1625), i743, java.lang.Object(o571sub)) → 1628_0_random_InvokeMethod(EOS(STATIC_1628), i743, java.lang.Object(o571sub))
1628_0_random_InvokeMethod(EOS(STATIC_1628), i743, java.lang.Object(o571sub)) → 1630_0_length_Load(EOS(STATIC_1630), i743, java.lang.Object(o571sub), java.lang.Object(o571sub))
1630_0_length_Load(EOS(STATIC_1630), i743, java.lang.Object(o571sub), java.lang.Object(o571sub)) → 1638_0_length_FieldAccess(EOS(STATIC_1638), i743, java.lang.Object(o571sub), java.lang.Object(o571sub))
1638_0_length_FieldAccess(EOS(STATIC_1638), i743, java.lang.Object(java.lang.String(o579sub, i926)), java.lang.Object(java.lang.String(o579sub, i926))) → 1640_0_length_FieldAccess(EOS(STATIC_1640), i743, java.lang.Object(java.lang.String(o579sub, i926)), java.lang.Object(java.lang.String(o579sub, i926))) | &&(>=(i926, 0), >=(i927, 0))
1640_0_length_FieldAccess(EOS(STATIC_1640), i743, java.lang.Object(java.lang.String(o579sub, i926)), java.lang.Object(java.lang.String(o579sub, i926))) → 1644_0_length_Return(EOS(STATIC_1644), i743, java.lang.Object(java.lang.String(o579sub, i926)), i926)
1644_0_length_Return(EOS(STATIC_1644), i743, java.lang.Object(java.lang.String(o579sub, i926)), i926) → 1648_0_random_Return(EOS(STATIC_1648), i743, i926)
1648_0_random_Return(EOS(STATIC_1648), i743, i926) → 1650_0_main_Store(EOS(STATIC_1650), i743, i926)
1650_0_main_Store(EOS(STATIC_1650), i743, i926) → 1656_0_main_JMP(EOS(STATIC_1656), i743, i926)
1656_0_main_JMP(EOS(STATIC_1656), i743, i926) → 1662_0_main_Load(EOS(STATIC_1662), i743, i926)
1662_0_main_Load(EOS(STATIC_1662), i743, i926) → 1460_0_main_Load(EOS(STATIC_1460), i743, i926)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1462_0_main_LT(EOS(STATIC_1462), -1, x1, -1) → 1462_0_main_LT(EOS(STATIC_1462), -1, +(x1, -1), -1) | >(+(x1, 1), 0)
1462_0_main_LT(EOS(STATIC_1462), x0, x1, x0) → 1462_0_main_LT(EOS(STATIC_1462), +(x0, -1), x2, +(x0, -1)) | &&(>(+(x2, 1), 0), >(+(x0, 1), 0))
R rules:
Filtered ground terms:
1462_0_main_LT(x1, x2, x3, x4) → 1462_0_main_LT(x2, x3, x4)
EOS(x1) → EOS
Cond_1462_0_main_LT1(x1, x2, x3, x4, x5, x6) → Cond_1462_0_main_LT1(x1, x3, x4, x5, x6)
Cond_1462_0_main_LT(x1, x2, x3, x4, x5) → Cond_1462_0_main_LT(x1, x4)
Filtered duplicate args:
1462_0_main_LT(x1, x2, x3) → 1462_0_main_LT(x2, x3)
Cond_1462_0_main_LT1(x1, x2, x3, x4, x5) → Cond_1462_0_main_LT1(x1, x3, x4, x5)
Filtered unneeded arguments:
Cond_1462_0_main_LT1(x1, x2, x3, x4) → Cond_1462_0_main_LT1(x1, x3, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1462_0_main_LT(x1, -1) → 1462_0_main_LT(+(x1, -1), -1) | >(x1, -1)
1462_0_main_LT(x1, x0) → 1462_0_main_LT(x2, +(x0, -1)) | &&(>(x2, -1), >(x0, -1))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1462_0_MAIN_LT(x1, -1) → COND_1462_0_MAIN_LT(>(x1, -1), x1, -1)
COND_1462_0_MAIN_LT(TRUE, x1, -1) → 1462_0_MAIN_LT(+(x1, -1), -1)
1462_0_MAIN_LT(x1, x0) → COND_1462_0_MAIN_LT1(&&(>(x2, -1), >(x0, -1)), x1, x0, x2)
COND_1462_0_MAIN_LT1(TRUE, x1, x0, x2) → 1462_0_MAIN_LT(x2, +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x1[0] > -1 ∧x1[0] →* x1[1])
(1) -> (0), if x1[1] + -1 →* x1[0]
(1) -> (2), if (x1[1] + -1 →* x1[2]∧-1 →* x0[2])
(2) -> (3), if (x2[2] > -1 && x0[2] > -1 ∧x1[2] →* x1[3]∧x0[2] →* x0[3]∧x2[2] →* x2[3])
(3) -> (0), if (x2[3] →* x1[0]∧x0[3] + -1 →* -1)
(3) -> (2), if (x2[3] →* x1[2]∧x0[3] + -1 →* x0[2])
(1) (>(x1[0], -1)=TRUE∧x1[0]=x1[1] ⇒ 1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))
(2) (>(x1[0], -1)=TRUE ⇒ 1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))
(3) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (>(x1[0], -1)=TRUE∧x1[0]=x1[1]∧+(x1[1], -1)=x1[0]1 ⇒ COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥1462_0_MAIN_LT(+(x1[1], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))
(7) (>(x1[0], -1)=TRUE ⇒ COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥1462_0_MAIN_LT(+(x1[0], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))
(8) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
(9) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
(10) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
(11) (>(x1[0], -1)=TRUE∧x1[0]=x1[1]∧+(x1[1], -1)=x1[2]∧-1=x0[2] ⇒ COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥1462_0_MAIN_LT(+(x1[1], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))
(12) (>(x1[0], -1)=TRUE ⇒ COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥1462_0_MAIN_LT(+(x1[0], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))
(13) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
(14) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
(15) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
(16) (+(x1[1], -1)=x1[2]∧-1=x0[2]∧&&(>(x2[2], -1), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 1462_0_MAIN_LT(x1[2], x0[2])≥NonInfC∧1462_0_MAIN_LT(x1[2], x0[2])≥COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥))
(17) (x2[3]=x1[2]∧+(x0[3], -1)=x0[2]∧&&(>(x2[2], -1), >(x0[2], -1))=TRUE∧x1[2]=x1[3]1∧x0[2]=x0[3]1∧x2[2]=x2[3]1 ⇒ 1462_0_MAIN_LT(x1[2], x0[2])≥NonInfC∧1462_0_MAIN_LT(x1[2], x0[2])≥COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥))
(18) (>(x2[2], -1)=TRUE∧>(+(x0[3], -1), -1)=TRUE ⇒ 1462_0_MAIN_LT(x2[3], +(x0[3], -1))≥NonInfC∧1462_0_MAIN_LT(x2[3], +(x0[3], -1))≥COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(+(x0[3], -1), -1)), x2[3], +(x0[3], -1), x2[2])∧(UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥))
(19) (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧[(-1)bso_22] ≥ 0)
(20) (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧[(-1)bso_22] ≥ 0)
(21) (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧[(-1)bso_22] ≥ 0)
(22) (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧0 = 0∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(23) (x2[2] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧0 = 0∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(24) (&&(>(x2[2], -1), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3]∧x2[3]=x1[0]∧+(x0[3], -1)=-1 ⇒ COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥1462_0_MAIN_LT(x2[3], +(x0[3], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))
(25) (+(x0[2], -1)=-1∧>(x2[2], -1)=TRUE∧>(x0[2], -1)=TRUE ⇒ COND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥1462_0_MAIN_LT(x2[2], +(x0[2], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))
(26) (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(27) (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(28) (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(29) (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧0 = 0∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
(30) (&&(>(x2[2], -1), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧x2[2]=x2[3]∧x2[3]=x1[2]1∧+(x0[3], -1)=x0[2]1 ⇒ COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥1462_0_MAIN_LT(x2[3], +(x0[3], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))
(31) (>(x2[2], -1)=TRUE∧>(x0[2], -1)=TRUE ⇒ COND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥1462_0_MAIN_LT(x2[2], +(x0[2], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))
(32) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(33) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(34) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(35) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧0 = 0∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1462_0_MAIN_LT(x1, x2)) = [-1] + x2
POL(-1) = [-1]
POL(COND_1462_0_MAIN_LT(x1, x2, x3)) = [-1] + x3
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(COND_1462_0_MAIN_LT1(x1, x2, x3, x4)) = [-1] + x3 + [-1]x1
POL(&&(x1, x2)) = 0
COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1))
1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])
COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1))
1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if x1[1] + -1 →* x1[0]
(0) -> (1), if (x1[0] > -1 ∧x1[0] →* x1[1])
(1) -> (2), if (x1[1] + -1 →* x1[2]∧-1 →* x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if x1[1] + -1 →* x1[0]
(0) -> (1), if (x1[0] > -1 ∧x1[0] →* x1[1])
(1) (>(x1[0], -1)=TRUE∧x1[0]=x1[1]∧+(x1[1], -1)=x1[0]1 ⇒ COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥1462_0_MAIN_LT(+(x1[1], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))
(2) (>(x1[0], -1)=TRUE ⇒ COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥1462_0_MAIN_LT(+(x1[0], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))
(3) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (>(x1[0], -1)=TRUE∧x1[0]=x1[1] ⇒ 1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))
(7) (>(x1[0], -1)=TRUE ⇒ 1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))
(8) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(9) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(10) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1462_0_MAIN_LT(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(-1) = [-1]
POL(1462_0_MAIN_LT(x1, x2)) = [-1] + [-1]x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(>(x1, x2)) = [-1]
COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer